Geometric Formulas

$(\mathrm{B}=$ the Area of the Base $) \quad(\mathrm{P}=$ the Perimeter of the Base $) \quad(\ell=$ the Slant Height $)$

A = LW
$\mathrm{P}=2 \mathrm{~L}+2 \mathrm{~W}$

$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$

$\begin{aligned} \mathrm{V} & =\mathrm{Bh} \\ \mathrm{SA} & =2 \mathrm{~B}+\mathrm{Ph}\end{aligned}$
($\mathrm{B}=$ Area of base)
($\mathrm{P}=$ Perimeter of base)

$\mathrm{A}=\mathrm{bh}$

$\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{C}=\pi \mathrm{d}$
or
$\mathrm{C}=2 \pi \mathrm{r}$

h

$$
A=\frac{1}{2} b h
$$

$\mathrm{SA}=2 \pi \mathrm{r}^{2}+2 \pi \mathrm{rh}$ $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

$$
\mathrm{SA}=\pi \mathrm{r}^{2}+\pi \mathrm{r} \ell
$$

$$
\mathrm{SA}=\mathrm{B}+1 / 2 \mathrm{Pl}
$$

$$
\mathrm{V}=1 / 3 \pi \mathrm{r}^{2} \mathrm{~h}
$$

$$
\text { (} \ell=\text { slant height })
$$

$$
\mathrm{V}=1 / 3 \mathrm{Bh}
$$

$$
V=\frac{4}{3} \pi r^{3} \quad S A=4 \pi r^{2}
$$

